
B1: NoSQL and MongoDB 1

COM644 Full-Stack Web and App Development

Practical B1: NoSQL and MongoDB

Aims
• To compare the relational and document store models for database

architecture
• To provide guidelines for the design of document store databases
• To demonstrate manipulation of JSON data in Javascript
• To introduce the MongoDB database engine
• To explain the purpose and structure of MongoDB _id values
• To introduce the MongoDB server
• To demonstrate the MongoDB Shell
• To practice manipulating databases, collections and documents in the

MongoDB Shell

Contents
B1.1 NOSQL DATABASES ... 2

B1.1.1 RELATIONS VS DOCUMENTS ... 2
B1.1.2 DOCUMENT-BASED DESIGN ... 4
B1.1.3 DATA MANIPULATION .. 6

B1.2 INTRODUCING MONGODB .. 9
B1.2.1 MONGODB ID VALUES ... 9

B1.3 THE MONGODB SHELL ... 10
B1.3.1 LAUNCHING A MONGODB SERVER .. 10
B1.3.2 WORKING WITH DATABASES, COLLECTIONS AND DOCUMENTS .. 11

B1: NoSQL and MongoDB 2

B1.1 NoSQL Databases

NoSQL refers to a collection of database organisation models that offer alternatives to the
tabular relations used in relational databases. Among the most popular NoSQL models are

Key-value stores
Document Stores
Graph databases

MongoDB is an example of a document store database, so we will begin by examining the
main differences between this and the relational architecture that you are familiar with.

B1.1.1 Relations vs Documents

To illustrate the difference between relational and document store databases, consider a
potential relational structure for a database to support a simple blog application, consisting
of blog posts and comments.

The relational approach is to maintain separate data items in separate tables, with
relationships between them identified by foreign key fields. For example, consider the
structure illustrated in Figure B1.1 where the first two entries in the COMMENTS table can
be seen to refer to the first entry in the POSTS table by use of the foreign key field PostID

Figure B1.1 Relational Table Structure

In order to display a post and its comments, the application would need to query both
tables, retrieving a row of data from the POSTS table as well as all rows in the COMMENTS
table where the PostID value matches that in the row being retrieved from the POSTS table.

Relational databases are designed for efficiency of storage and a primary aim when
designing a relational structure is to eliminate duplication of data. Each piece of data should
only be stored once, so that when any information is updated, it only needs to be changed
in one place. The rules that enforce this make up the process known as normalisation.

B1: NoSQL and MongoDB 3

A document store database, on the other hand, is designed for efficiency of retrieval. The
design is governed by the application in which the database will be used, so that (as far as
possible) all of the information required should be retrieved in a single operation (i.e. one
query, with no joins between different collections).

In the blog example, above, the most commonly performed operation will be the retrieval
and display of posts and their comments, so the same dataset might be represented by the
following JSON-style structure.

[
 {
 “PostID” : 1,
 “Title” : “My first post”,
 “Content” : “Some content”,
 “Comments” : [
 {
 “CommentID” : 1,
 “Content” : “Commenting on your first post”
 },
 {
 “CommentID” : 2,
 “Content” : “Also on your first post”
 }
]
 },
 {
 “PostID” : 2,
 “Title” : “My second post”,
 “Content” : “Some content”,
 “Comments” : [
 {
 “CommentID” : 3,
 “Content” : “Commenting on your second post”
 }
]
 },
 {
 “PostID” : 3,
 “Title” : “My third post”,
 “Content” : “Some content”
 }
]

Here, the entire structure is represented as an array (enclosed within […]), with each post
defined as a Javascript object (enclosed with { … }). Each object (post) is specified as a
key/value pair, where the key is the name of the element (i.e. the column name in the
relational table) and the value is the data element that is stored.

Note that comments on posts are embedded into the structure, with the Comments item
defined as an array of comment objects. Note also, that when a field in an object is not
required (e.g. the third post has no comments), then is it is simply left out. This is in

B1: NoSQL and MongoDB 4

contrast to the relational model which demands that each field has a value (even if that
value is NULL).

B1.1.2 Document-based Design

The principle of efficiency of retrieval has a significant effect on the way in which we
approach database design. In a relational architecture, there is typically one “correct”
normalised structure for any given set of data, and all applications that make use of this
database will interact with it according to this structure.

However, in a document store database we must consider the application when designing
the database so that we produce the most efficient data retrieval platform. This may result
in two applications that use the same raw data set with different preferred database
architectures – because of the way in which they consume the data.

Consider the addition of a ‘users’ collection to our blog structure. We may want to store a
set of various information about the user such as a name, email address, short bio, star sign,
favourite colour, etc., etc. – so an obvious approach would be to have a separate structure
such as that shown below.

[
 {
 “UserID” : 1,
 “UserName” : “Adrian”,
 “DisplayName” : “Adrian Moore”,
 “Bio” : “Web person”
 },
 {
 “UserID” : 2,
 “UserName” : “Therese”,
 “DisplayName” : “Therese Charles”,
 “Bio” : “Project management guru”
 }
]

An application that needs to display all details pertaining to an individual user will simply
read the appropriate object from this collection and retrieve each field.

However, it is obvious that we may want to display the name of a user alongside any posts
that they have made, but maintaining this information in a separate collection does against
the principle of efficiency of retrieval – as the information on a post and the user who
contributed it would be spread across two collections.

The solution is one that is alien to a relational database designer – we simply store the
information in each place where it is needed – giving the following structure for the
collection of posts and comments.

B1: NoSQL and MongoDB 5

 [
 {
 “PostID” : 1,
 “Title” : “My first post”,
 “Content” : “Some content”,
 “Comments” : [
 {
 “CommentID” : 1,
 “Content” : “Commenting on your first post”
 },
 {
 “CommentID” : 2,
 “Content” : “Also on your first post”
 }
],
 “Author” : {
 “UserId” : 1,
 “DisplayName” : “Adrian Moore”
 }
 },
 {
 “PostID” : 2,
 “Title” : “My second post”,
 “Content” : “Some content”,
 “Comments” : [
 {
 “CommentID” : 3,
 “Content” : “Commenting on your second post”
 }
] ,
 “Author” : {
 “UserId” : 1,
 “DisplayName” : “Adrian Moore”
 }
 },
 {
 “PostID” : 3,
 “Title” : “My third post”,
 “Content” : “Some content” ,
 “Author” : {
 “UserId” : 2,
 “DisplayName” : “Therese Charles”
 }
 }
]

Under this scheme, we are storing some of the user information twice – all user details are
held in the Users collection so that the page that shows a user’s information can retrieve it
all from one place, but some details are duplicated in the “Posts” collection so that we can
satisfy the ‘view posts’ operation with a single database query.

The obvious drawback of this is that if a user decided to change their DisplayName, we
would need to open the database and change every instance of it. This would be a very

B1: NoSQL and MongoDB 6

expensive operation, but its cost is outweighed by the benefit of the simple single-shot data
retrieval for the most commonly performed operation.

In general, there are three main principles for design of document store database
structures:

1. Keep the number of collections (tables) to a minimum

2. Keep each page or view to a single database query (no joins)

3. Optimise for the most common operations – even at the expense of less common
tasks

B1.1.3 Data manipulation

Before continuing to the MongoDB document store database, it is useful to examine our
Posts structure in code and see how Javascript can retrieve and manipulate individual
elements.

Create a new folder called B1 and create a new MEAN app within this folder by the
command

U:\B1> npm init

Now copy the file posts.json into the B1 folder and create the file app.js with the following
code.

File: B1\app.js

var posts = require(‘./posts.json’);

console.log(posts[0].Title);
console.log(posts[0].Content);

Now run the application and verify that you retrieve and display the Title and Content
values from the first Post element as shown in Figure B1.2 below.

B1: NoSQL and MongoDB 7

Figure B1.2 Retrieving from the JSON data structure

In order to loop through all posts and retrieve their Title, Content and author Display Name
fields, repeat the previous exercise using the following code.

File: B1\app.js

var posts = require('./posts.json');

for (var i=0; i < posts.length; i++) {
 console.log(posts[i].Title);
 console.log(posts[i].Content);
 console.log(posts[i].Author.DisplayName);
 console.log();
}

Finally, we will see how to deal with fields that may not be present in the data set. Modify
app.js by including a test for the availability of a Comments field and, where it is present,
loop across the array of comments, printing each Content value to the Console.

Check that you get output such as that in Figure B1.3 below.

B1: NoSQL and MongoDB 8

File: B1\app.js

var posts = require('./posts.json');

for (var i=0; i < posts.length; i++) {
 console.log(posts[i].Title);
 console.log(posts[i].Content);
 console.log(posts[i].Author.DisplayName);
 if(posts[i].Comments) {
 for (var j=0; j<posts[i].Comments.length; j++) {
 console.log(posts[i].Comments[j].Content);
 }
 }
 console.log();
}

Figure B1.3 Dealing with optional JSON fields

Try it now!

Design your own document store database as a JSON structure (perhaps a dataset
connected to your Final Year Project?) and…

i) Verify that the JSON is properly specified by requiring it into an app.js file

ii) Write Javascript code to iterate across your collection, writing selected values to the
console.

B1: NoSQL and MongoDB 9

B1.2 Introducing MongoDB

MongoDB (derived from Humongous Database) is a document store database that
organises information as collections. In our Posts example from the previous section, the
file posts.json represents a single collection, which is made up of a number of documents –
each document being a specification of a single post. Therefore, our Posts collection
comprised three documents, while our Users collection was made up of two documents.

Although we have used JSON as the means of describing the collections, MongoDB actually
uses a notation called BSON (pronounced bi-son) – a binary encoding of JSON that
maintains the flexibility and ease of use of JSON, while adding the speed advantages of a
binary format. However, MongoDB accepts JSON as input and produces JSON as output, so
we as developers do not need to be concerned with the internal representation.

B1.2.1 MongoDB ID values

In our example, we included ID fields for Posts, Comments, Authors and Users. In fact,
MongoDB will generate ID values automatically for each new document (or sub-document)
that is created – so we never need to provide these ourselves.

In MongoDB, the ID field is always called _id and has a value that is defined as an
ObjectId() with a long alphanumeric string derived from the date, time, machine
identifier, process identifier and a counter – so no two _id values will be identical even
across different installations. For example, a MongoDB implementation of our Posts
collection might have auto-generated _id values as follows.

[
 {
 “_id” : ObjectId(“165de4208b234b2140”),
 “Title” : “My first post”,
 “Content” : “Some content”,
 “Comments” : [
 {
 “_id” : ObjectId(“567be1208b234b5778”),
 “Content” : “Commenting on your first post”
 },
 {
 “_id” : ObjectId(“bc009208b2738f6e5”),
 “Content” : “Also on your first post”
 }
],
 “Author” : {
 “_id” : ObjectId(“5e53c4208b234012b4”),
 “DisplayName” : “Adrian Moore”
 }
 },
 ...
]

B1: NoSQL and MongoDB 10

B1.3 The MongoDB Shell

MongoDB has been provided for you on the lab machines, but if you want to install it on
your own machine, you can obtain it free from http://www.mongodb.org.

The only piece of setup we need to do is to provide a data folder in which MongoDB will
store the databases. On your personal machine, this will be a folder C:\data\db – but the
lab installation has been set to U:\data\db so that your work will be available to you
regardless of which lab machine you use.

Check your U: drive for the presence of a folder U:\data\db and, if it does not exist, create it
now by opening a Command window, navigating to the U: drive and issuing the command

U:\> mkdir data
U:\> cd data
U:\data> mkdir db

B1.3.1 Launching a MongoDB server

In order to use MongoDB, we need to launch a Mongo server that will service requests that
are made either from the Mongo Shell or from MEAN applications. You can launch the
MongoDB server by issuing the command

 U:\> mongod

which should result in output as illustrated in Figure B1.4 below.

Figure B1.4 MongoDB server

B1: NoSQL and MongoDB 11

We leave this Command window open with the server application running while we interact
with the database.

B1.3.2 Working with Databases, Collections and Documents

We can verify that MongoDB is installed and that a server is running by opening a new
Command window (remember to leave the previous one open and running) and issuing the
command to enter the Mongo Shell as follows.

U:\> mongo

After some initial start-up and status messages, you should see the MongoDB prompt >, at
which we can enter MongoDB Shell commands.

First, we will ask MongoDB to list the databases available to us by the command

> show dbs

By default, only one database, called local, is available so we can switch to this database by
the command

> use local

To add a new database, we simply use one that is not already present. For example, to
create a new database called databaseB1, we issue the command

> use databaseB1

and create a collection within this database by the command

> db.createCollection(“collectionB1”)

where the object db refers to the currently selected database (the subject of the most
recent use command) and the parameter collectionB1 is the name to be given to the new
collection.

Running the command

> show collections

will now verify that our new collection has been added to the database.

To add a document to a collection, we need to insert it into a collection on the currently
active database by the command

B1: NoSQL and MongoDB 12

> db.collectionB1.insert({ name : “MongoDB”, role: “Database” })

We should now see confirmation that have inserted one document into the collection.
To add multiple documents at once, we can simply pass an a JSON array as the parameter to
insert()

> db.collectionB1.insert([
 { name: “Express”, role: ”Web application architecture” },

 { name: “Angular”, role: “Front-end framework” },
 { name: “Node.JS”, role: “Server platform” }
])

Figure B1.5 illustrates the output generated by the above sequence. Note that you can
enter JSON data over multiple lines by using the <return> key.

Figure B1.5 Using the Mongo Shell

To retrieve documents from a collection, we chain the find() method to the database and
collection

> db.collectionB1.find()

B1: NoSQL and MongoDB 13

In order to format this output in a more readable format, we can additionally chain the
method pretty() to the command

> db.collectionB1.find().pretty()

Figure B1.6 illustrates the output when retrieving the collection and passing the output
through the pretty() method. Note the format of the _id field that was automatically
assigned by Mongo as each document was generated.

Figure B1.6 Retrieving the collection

Try it now!

Revisit your JSON structure created earlier, and…

i) Create a new collection in the databaseB1 database to store your data.

ii) Use db.collection.insert() to add your data to the new collection.
HINT: This will be quite a long command, so it is best to create it in a text editor before
copying and pasting into the Console window.

To leave the Mongo Shell, either enter CTRL-C or issue the command exit. The mongod
server can also be stopped by CTRL-C.

